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The main difficulty of the Cauchy equation is that there is no domain in which 
the desired solution must be determined. This situation leads to the 
complexity of finding the answer. The study presents a solution of the Cauchy 
problem at any values. The achievement of the set goal will enable solving 
one of the key problems of gas dynamics. To that end, it is necessary to define 
the solution, since a solution in a classical form is nonexistent for this type of 
equations. We presented an algorithm for the construction of periodic, in 
terms of variables, solutions of the system in first order partial derivatives. 
The study found a sufficient condition of existence of periodic, in terms of 
variables, solutions in the broad sense of differential equation systems in 
partial derivatives. 
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1. Introduction 

*Differential equations are a basic mathematical 
tool that is used to model various physical laws and 
phenomena (Perko, 2013; Filippov, 2013; Browder, 
2016). Systems of linear and quasilinear hyperbolic 
equations often emerge during the mathematical 
modeling of various oscillatory processes (Kang, 
2014) that occur in a solid medium, when studying 
the flow of combustible gases and liquids, filtration 
problems, and the shallow water theory. Triangular 
block linear systems in first order partial derivatives 
simplify the construction of principal matrix 
solutions of linear systems, since the first equation of 
the system can be regarded as an equation with an 
identical main part. 

Nowadays, the theory of differential equations is 
the basis of engineering, physical, and chemical 
calculations in science and industry (Butcher, 2016; 
Polyanin and Nazaikinskii, 2015; Edwards and 
Penney, 2014). Thus, the theory of differential 
equations serves as a source for modern exact 
sciences (Nemytskii, 2015; Bluman and Kumei, 
2013). Differential equations also play a major role 
in other sciences, such as economics, biology, 
electrical engineering, etc. In fact, they are 
encountered everywhere, where a quantitative 

                                                 
* Corresponding Author.  
Email Address: mirra478@mail.ru (A. Bekbauova) 

https://doi.org/10.21833/ijaas.2018.06.009 
2313-626X/© 2018 The Authors. Published by IASE.  
This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/) 

description of phenomena is required (Amel’kin, 
1990). The classical solutions of nonlinear equations 
are characterized by an infinite increase of the value 
of derivatives, which is called a gradient catastrophe. 
The essence of this property lies in the fact that with 
any arbitrarily smooth initial values, the first 
derivatives remain limited for a finite time only. At a 
certain 𝑡0 > 0, they become unlimited. At 𝑡 > 𝑡0, a 
classical solution of the set Cauchy problem is 
nonexistent (for instance, a shockwave that is 
formed by a contraction wave). Thus, in order to 
determine the solution of the Cauchy problem at any 
t values, i.e., in general (the main problem of gas 
dynamics), it is necessary to define the solution, 
since, as was mentioned above, a solution in its 
classical form is nonexistent. 

2. Materials and methods  

In most physical problems, the definition of the 
generalized solutions is dictated by the setting of the 
problem (for instance, in gas dynamics, the main 
physical laws are the laws of conservation of mass, 
impulse, and energy, while the generalized solution 
is defined as a flow that satisfies these main laws). 
Based on work by Friedrichs (1948), the generalized 
solution of a system in partial derivatives is called a 
broad-sense solution. Consider a hyperbolic linear 
system 

 
𝐷1𝑥 = 𝑃11(𝑡, 𝜑, 𝜓)𝑥 + 𝑓1(𝑡, 𝜑, 𝜓)                   (1) 
𝐷2𝑥 = 𝑃21(𝑡, 𝜑, 𝜓)𝑥 + 𝑃22(𝑡, 𝜑, 𝜓)𝑦 + 𝑓2(𝑡, 𝜑, 𝜓)  
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where 
 

𝑡 ∈ (−∞, +∞)𝑅, 𝜑 = (𝜑1, … , 𝜑𝑚) ∈ 𝑅𝑚,  
𝜓 = (𝜓1, … , 𝜓𝑘) ∈ 𝑅𝑘  
𝑥 = (𝑥1, … , 𝑥𝑛1), 𝑦 = (𝑦1, … , 𝑦𝑛2)  

 
are the sought vector functions, 𝐷1 and 𝐷2 are 
differential operators  
 

𝐷1 =
𝜕

𝜕𝑡
+ ∑ 𝑎1𝑗

𝑚
𝑗=1 (𝑡, 𝜑, 𝜓)

𝜕

𝜕𝜑𝑗
+ ∑ 𝑏1𝑗

𝑘
𝑗=1 (𝑡, 𝜑, 𝜓)

𝜕

𝜕𝜓𝑗
,  

𝐷2 =
𝜕

𝜕𝑡
+ ∑ 𝑎2𝑗

𝑚
𝑗=1 (𝑡, 𝜑, 𝜓)

𝜕

𝜕𝜑𝑗
+ ∑ 𝑏2𝑗

𝑘
𝑗=1 (𝑡, 𝜑, 𝜓)

𝜕

𝜕𝜓𝑗
,  

 

𝑃𝑖𝑗(𝑡, 𝜑, 𝜓) − 𝑛𝑖 × 𝑛𝑗 – matrices, (𝑖, 𝑗 = 1,2), which 

are periodic and limited  
 

‖𝑃ӱ‖ ≤ 𝑘ӱ,                                                              (2) 

𝑃ӱ(𝑡 + 𝜃, 𝜑 + 𝑞𝜔, 𝜓) =  

= 𝑃ӱ(𝑡, 𝜑, 𝜓) ∈ 𝐶(𝑅 × 𝑅𝑚 × 𝑅𝑘)  

‖𝑓𝑖‖ ≤ 𝑘ӱ,  
𝑓1(𝑡 + 𝜃, 𝜙 + 𝑞𝜔, 𝜓 =

𝑓1(𝑡, 𝜑, 𝜓) ∈ 𝐶(𝑅 × 𝑅𝑚 × 𝑅𝑘,                                          (3) 

𝑎11(𝑡, 𝜑, 𝜓), 𝑎21(𝑡, 𝜑, 𝜓),

𝑏11(𝑡, 𝜑, 𝜓), 𝑏21(𝑡, 𝜑, 𝜓)
 –  

 
continuous vector dimension functions, m, k, 
respectively, which are periodic and smooth  

 

𝑞1(𝑡 + 𝜃, 𝜙 + 𝑞𝜔𝜓) =

𝑞1(𝑡, 𝜑, 𝜓) ∈ 𝐶𝑡,𝜙,𝜓
(0,11)

(𝑅 × 𝑅𝑚 × 𝑅𝑘, 

𝐵1𝑙(𝑡 + 𝜃, 𝜙 + 𝑞𝜔, 𝜓) =

𝑏1𝑙(𝑡, 𝜑, 𝜓) ∈ 𝐶𝑡,𝜙,𝜓
(0,11)

(𝑅 × 𝑅𝑚 × 𝑅𝑘,                        (4) 

 

and limited, with a norm that maximizes the 
Euclidian metrics of the vector function 
 

‖𝛼ӱ‖ ≤ 𝛼00, ‖
𝜕

𝜕𝜑
𝛼𝑖𝑗‖ ≤ 𝛼10, ‖

𝜕

𝜕𝜓
𝛼𝑖𝑗‖ ≤ 𝛼01, 

‖𝑏ӱ‖ ≤ 𝛽00,  

‖
𝜕

𝜕𝜑
𝑏ӱ‖ ≤ 𝛽10, ‖

𝜕

𝜕𝜑
𝑏ӱ‖ ≤ 𝛽01                            

 

for all integer vectors 𝑞 = (𝑞1, … , 𝑞𝑚) ∈ 𝑍 × … × 𝑍 =
𝑍𝑚 , Z- is a set of integers. Periods  𝜔0 = 𝜃, 𝜔1, … , 𝜔𝑚 
are rationally incommensurable and constant, 𝑞𝜔 =
(𝑞1𝜔1, 𝑞2𝜔2, … , 𝑞𝑚𝜔𝑚) is the vector of multiple 
periods, 𝜔 = (𝜔1, … , 𝜔𝑚), 𝑖, 𝑗, 𝑙 = 1,2. 
𝛼00, 𝛽00, 𝛼10, 𝛽10, 𝛼01, 𝛽01 are positive constants.  

3. Definition  

A continuous in R × Rm × Rk function z(t, φ, ψ) =
(x(t, φ, ψ), y(t, φ, ψ)) is called a multiperiodic, in 
terms of variables, solution of system (1) in the 
broad sense if it is multiperiodic at t, φ with a period 
vector of (𝜃, 𝜔) limited in all variables and 
continuously differentiated for variable t along the 
characteristics 
{λ1(t, t0, φ0, ψ0), ξ1(t, t0, φ0, ψ0)}  

 

and  
 

{λ2(t, t0, φ0, ψ0), ξ2(t, t0, φ0, ψ0)};   

at that, for full derivatives for t, the following 
identities are satisfied 

{

𝑑𝑥

𝑑𝑡
𝑃11𝑥                   

𝑑𝑦

𝑑𝑡
= 𝑃21𝑥 + 𝑃22𝑦

                                     (5) 

 
where 
 
𝑥 = 𝑥(𝑡, 𝜆1(𝑡, 𝑡0, 𝜑0, 𝜓0), 𝜉1(𝑡, 𝑡0, 𝜑0, 𝜓0))  
𝑃11 = 𝑃11(𝑡, 𝜆1(𝑡, 𝑡0, 𝜑0, 𝜓0), 𝜉1(𝑡, 𝑡0, 𝜑0, 𝜓0))  
𝑦 = 𝑦(𝑡, 𝜆2(𝑡, 𝑡0, 𝜑0, 𝜓0), 𝜉2(𝑡, 𝑡0, 𝜑0, 𝜓0))𝑃22 =
𝑃22(𝑡, 𝜆2(𝑡, 𝑡0, 𝜑0, 𝜓0), 𝜉2(𝑡, 𝑡0, 𝜑0, 𝜓0))  
 𝑃21 = 𝑃21(𝑡, 𝜆1(𝑡, 𝑡0, 𝜑0, 𝜓0), 𝜉1(𝑡, 𝑡0, 𝜑0, 𝜓0))  
𝑃21 = 𝑃21(𝑡, 𝜆2(𝑡, 𝑡0, 𝜑0, 𝜓0), 𝜉2(𝑡, 𝑡0, 𝜑0, 𝜓0))  
 

The task is to study the existence of 
multiperiodic, in terms of variables, broad-sense 
solutions of system (1). 

In order to find the characteristics of the function 
of differential operators, the following systems of 
ordinary differential equations: 
 

{

𝑑𝜑

𝑑𝑡
= 𝑎11(𝑡, 𝜑, 𝜓)

𝑑𝜓

𝑑𝑡
= 𝑏11(𝑡, 𝜑, 𝜓)

                    {

𝑑𝜑

𝑑𝑡
= 𝑎21(𝑡, 𝜑, 𝜓)

𝑑𝜓

𝑑𝑡
= 𝑏21(𝑡, 𝜑, 𝜓)

 

 

solutions  
 
𝜑 = 𝜆1(𝑡, 𝑡0, 𝜑0, 𝜓0), 𝜓 = 𝜉1(𝑡, 𝑡0, 𝜑0, 𝜓0)  

 
and  
 
𝜑 = 𝜆2(𝑡, 𝑡0, 𝜑0, 𝜓0),  
𝜓 = 𝜉2(𝑡, 𝑡0, 𝜑0, 𝜓0)  
 

of the two systems of ordinary differential equations 
with initial data (𝑡, 𝑡0, 𝜑0, 𝜓0) ∈ 𝑅 × 𝑅𝑚 × 𝑅𝑘  under 
conditions (4) are determined globally at 𝑡 ∈ 𝑅.  

Let us find the principal matrix solution of a 
homogenous system that corresponds with system 
(1) in a fashion similar to (Bekbauova et al., 2010). 
To that end, consider the following integral 
equations: 
 

𝑋(𝑡, 𝜙, 𝜓, 𝑡0, 𝜆1(𝑡0, 𝑡, 𝜑, 𝜓), 𝜁1(𝑡0, 𝑡, 𝜑, 𝜓)) =  

𝑋0(𝑡, 𝜙, 𝜓, 𝑡0, 𝜆1(𝑡0, 𝑡, 𝜑, 𝜓), 𝜁1(𝑡0, 𝑡, 𝜑, 𝜓)) +  

+ ∫ 𝑋0(𝑡, 𝜙, 𝜓, 𝑠, 𝜆1(𝑠, 𝑡, 𝜙, 𝜓), 𝜁1𝑡

𝑡0
(𝑠, 𝑡, 𝜙, 𝜓)).  

𝑃12(𝑠, 𝑡, 𝜙, 𝜓), 𝜁1(𝑠, 𝑡, 𝜙, 𝜓)) ×     

× 𝑌 ( 𝑠,𝜆1(𝑠,𝑡,𝜙,𝜓),𝜁1(𝑠,𝑡,𝜙,𝜓),𝑡0,

𝜆1(𝑡0𝑡,𝜙,𝜓),𝜁1(𝑡0𝑡,𝜙,𝜓)          
) 𝑑𝑠,  

𝑌(𝑡, 𝜙, 𝜓, 𝑡0𝜆2(𝑡0𝑡, 𝜙, 𝜓), 𝜁2(𝑡0𝑡, 𝜙, 𝜓))  
= 𝑌0(𝑡, 𝜙, 𝜓, 𝑡0𝜆2(𝑡0𝑡, 𝜙, 𝜓), 𝜁2(𝑡0𝑡, 𝜙, 𝜓))  

+ ∫ 𝑌0(𝑡, 𝜙, 𝜓, 𝑠, 𝜆2(𝑠, 𝑡, 𝜙, 𝜓), 𝜁2𝑡

𝑡0
(𝑠, 𝑡, 𝜙, 𝜓))   

𝑃21(𝑠, 𝜆2(𝑠, 𝑡, 𝜙, 𝜓), 𝜁2(𝑠, 𝑡, 𝜙, 𝜓)) ×   

× 𝑋 ( 𝑠,𝜆2(𝑠,𝑡,𝜙,𝜓),𝜁2(𝑠,𝑡,𝜙,𝜓),𝑡0,

𝜆2(𝑡0𝑡,𝜙,𝜓),𝜁2(𝑡0𝑡,𝜙,𝜓)          
) 𝑑𝑠,  

4. Results and discussions  

In order to solve the system of integral equations, 
we use the method of successive approximation and 
study the convergence of series, similar to 
(Bekbauova et al., 2010). Consequently, the diagonal 
matrix 

 

𝑍1 (𝑡,𝜙,𝜓,𝑡0𝜆1(𝑡0𝑡,𝜙,𝜓),𝜁1(𝑡0𝑡,𝜙,𝜓)

𝜆2(𝑡0𝑡,𝜙,𝜓),𝜁2(𝑡0𝑡,𝜙,𝜓)                 
) = 𝑑𝑖𝑎𝑔[𝑋, 𝑌],  
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is a broad-sense solution of the corresponding linear 
homogenous system (1) and satisfies the initial 
condition 

 
𝑍1(𝑡0, 𝜑, 𝜓, 𝑡0, 𝜑, 𝜓, 𝜑, 𝜓)) = 𝐸      

 
which we will call the principal matrix solution of 
system (1) in the broad sense, where E is an identity 
matrix. 

Assume that the principal matrix solution has the 
following property 
 

  |𝑍1 (𝑡,𝜙,𝜓,𝑡0𝜆1(𝑡0𝑡,𝜙,𝜓),𝜁1(𝑡0𝑡,𝜙,𝜓),

𝜆2(𝑡0𝑡,𝜙,𝜓),𝜁2(𝑡0𝑡,𝜙,𝜓)                 
)| ≤ 𝐵1𝑒−𝛾(𝑡−𝑡0)                 (5) 

 
where 𝑡 ≥ 𝑡0, 𝐵 = 𝑐𝑜𝑛𝑠𝑡 ≥ 1,   𝛾 = min {𝛾1, 𝛾2} > 0. 

Since under conditions (2), (4), and (5), any 
broad-sense solution 𝑧(𝑡, 𝜑, 𝜓) =
(𝑥(𝑡, 𝜑, 𝜓), 𝑦(𝑡, 𝜑, 𝜓)) of a linear homogenous system 
can be presented in the following form  
 
𝑧(𝑡, 𝜑, 𝜓) =  
𝑍1(𝑡,𝜑,𝜓,𝑡0,𝜆1(𝑡0,𝑡,𝜑,𝜓),𝜁1(𝑡0,𝑡,𝜑,𝜓),

𝜆2(𝑡0,𝑡,𝜑,𝜓),𝜁2(𝑡0,𝑡,𝜑,𝜓)                         
) ×  

×𝑢(𝜆1(𝑡0,𝑡,𝜑,𝜓),𝜁1(𝑡0𝑡,𝜙,𝜓),

𝜆2(𝑡0,𝑡,𝜑,𝜓),𝜁2(𝑡0,𝑡,𝜑,𝜓)     
)  

 

where 
 
(𝜆1(𝑡0,𝑡,𝜑,𝜓),𝜁1(𝑡0𝑡,𝜙,𝜓),
(𝑡0,𝑡,𝜑,𝜓),𝜁2(𝑡0,𝑡,𝜑,𝜓)     

) =  

= ( 𝑣(𝜆1(𝑡0,𝑡,𝜑,𝜓),𝜁1(𝑡0𝑡,𝜙,𝜓)

𝑤(𝜆2(𝑡0,𝑡,𝜑,𝜓),𝜁2(𝑡0𝑡,𝜙,𝜓)
)  

 

The initial function satisfies the following 
condition: 
 

𝑢(𝜑, 𝜓) = (𝑢1(𝜑, 𝜓), … , 𝑢𝑛(𝜑, 𝜓)),  

𝑢(𝜑, +𝑞𝜔, 𝜓) = 𝑢(𝜑, 𝜓) ∈ 𝐶(𝑅𝑚 × 𝑅𝑘), 𝑞 ∈ 𝑍𝑚,  
 

with a norm of 
 

‖𝑢‖ = 𝑠𝑢𝑝
𝑅𝑚×𝑅𝑘

√∑ 𝑢𝑗
2(𝜑, 𝜓),𝑛

𝑗−1   

 
Theorem 1: Under conditions (2), (4), and (5), the 
linear system has no (𝜃, 𝜔) periodic solutions except 
the zero-state solution. 
 
Theorem 2: Assume conditions (2), (3), (4), and (5) 
are met. Then the linear nonhomogeneous system 
(1) has a single multiperiodic, in terms of variables, 
broad-sense solution. 
 

𝑥∗(𝑡, 𝜑, 𝜓) = ∫ 𝑋
𝑡

−∞
  

(𝑡, 𝜑, 𝜓, 𝑠, 𝜆1(𝑠, 𝑡, 𝜑, 𝜓), 𝜉1(𝑠, 𝑡, 𝜑, 𝜓)  

× 𝑓1(𝑠, 𝜆1(𝑠, 𝑡, 𝜑, 𝜓), 𝜉1(𝑠, 𝑡, 𝜑, 𝜓))𝑑𝑠  

× 𝑓1(𝑠, 𝜆1(𝑠, 𝑡, 𝜑, 𝜓), 𝜉1(𝑠, 𝑡, 𝜑, 𝜓))𝑑𝑠  

 (𝑡, 𝜑, 𝜓, 𝑠, 𝜆2(𝑠, 𝑡, 𝜑, 𝜓), 𝜉2(𝑠, 𝑡, 𝜑, 𝜓))  

× 𝑓2(𝑠, 𝜆2(𝑠, 𝑡, 𝜑, 𝜓), 𝜉2(𝑠, 𝑡, 𝜑, 𝜓))𝑑𝑠  

‖𝑥∗(𝑡, 𝜑, 𝜓)‖ ≤
𝐵𝐾1

𝛾
  

‖𝑦∗(𝑡, 𝜑, 𝜓)‖ ≤
𝐵𝐾2

𝛾
  

 
where 
 
‖𝑓1‖ = sup

𝑅×𝑅𝑚×𝑅𝑘

‖𝑓1(𝑡, 𝜑, 𝜓)‖ = 𝐾1  

‖𝑓2‖ = sup
𝑅×𝑅𝑚×𝑅𝑘

‖𝑓2(𝑡, 𝜑, 𝜓)‖ = 𝐾2  

5. Conclusion  

Thus, the proposed estimations reduce the 
number of calculations in comparison to other 
methods. The achievement of the set goal enables 
theoretically solving one of the most complex 
problems of gas dynamics. 

The study showed the conditions of existence and 
uniqueness of a multiperiodic, in terms of variables, 
broad-sense solution of linear systems of differential 
equations in first order partial derivatives with an 
identical main part. 
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